Home » News » AI Algorithm May Help ID Homeless Youth at Risk for Substance Abuse
AI Algorithm May Help ID Homeless Youth at Risk for Substance Abuse

AI Algorithm May Help ID Homeless Youth at Risk for Substance Abuse

An artificial intelligence (AI) algorithm developed by a research team from the College of Information Sciences and Technology at Penn State could help predict susceptibility to substance use disorder among homeless youth and suggest personalized rehabilitation programs for these highly vulnerable individuals.

While many programs have been implemented to address the prevalence of substance abuse among homeless youth in the U.S., few if any have included data-driven insights about environmental and psychological factors that could contribute to a person’s likelihood of developing a substance use disorder.

“Proactive prevention of substance use disorder among homeless youth is much more desirable than reactive mitigation strategies such as medical treatments for the disorder and other related interventions,” said Amulya Yadav, assistant professor of information sciences and technology and principal investigator on the project. “Unfortunately, most previous attempts at proactive prevention have been ad-hoc in their implementation.”

Maryam Tabar, a doctoral student in informatics and lead author on the paper, added, “To assist policymakers in devising effective programs and policies in a principled manner, it would be beneficial to develop AI and machine learning solutions which can automatically uncover a comprehensive set of factors associated with substance use disorder among homeless youth.”

The findings were presented at the Knowledge Discovery in Databases (KDD) conference.

For the project, the research team built the model using data collected from approximately 1,400 homeless youth, ages 18 to 26, in six U.S. states.

The data was collected by the Research, Education and Advocacy Co-Lab for Youth Stability and Thriving (REALYST), which includes Anamika Barman-Adhikari, assistant professor of social work at the University of Denver and co-author of the paper.

The research team then identified the environmental, psychological and behavioral factors linked to substance use disorder, such as criminal history, victimization experiences and mental health characteristics.

They discovered that adverse childhood experiences and physical street victimization were more strongly linked to substance use disorder than other types of victimization, such as sexual victimization, among homeless youth.

In addition, post-traumatic stress disorder (PTSD) and depression were found to be more strongly associated with substance use disorder than other mental health disorders among this population.

Next, the team divided their dataset into six smaller datasets to look at geographical differences. They trained a separate model to predict substance use disorder among homeless youth in each of the six states, which have varying environmental conditions, drug legalization policies and gang associations. The team found several location-specific variations in the association level of some factors, according to Tabar.

“By looking at what the model has learned, we can effectively find out factors which may play a correlational role with people suffering from substance abuse disorder,” said Yadav. “And once we know these factors, we are much more accurately able to predict whether somebody suffers from substance use.”

He added, “So if a policy planner or interventionist were to develop programs that aim to reduce the prevalence of substance abuse disorder, this could provide useful guidelines.”

Other authors on the KDD paper include Dongwon Lee, associate professor, and Stephanie Winkler, doctoral student, both in the Penn State College of Information Sciences and Technology; and Heesoo Park of Sungkyunkwan University.

Yadav and Barman-Adhikari are working on a similar project through which they have developed a software agent that designs personalized rehabilitation programs for homeless youth struggling with opioid addiction. Their simulation results show that the software agent — called CORTA (Comprehensive Opioid Response Tool Driven by Artificial Intelligence) — outperforms baselines by approximately 110% in minimizing the number of homeless youth suffering from opioid addiction.

“We wanted to understand what the causative issues are behind people developing opiate addiction,” said Yadav. “And then we wanted to assign these homeless youth to the appropriate rehabilitation program.”

Yadav explains that data collected by more than 1,400 homeless youth in the U.S. was used to build AI models to predict the likelihood of opioid addiction among this population. After analyzing the issues that could be the underlying cause of opioid addiction — such as foster care history or exposure to street violence — CORTA solves novel optimization formulations to assign personalized rehabilitation programs.

“For example, if a person developed an opioid addiction because they were isolated or didn’t have a social circle, then perhaps as part of their rehabilitation program they should talk to a counselor,” explained Yadav.

“On the other hand, if someone developed an addiction because they were depressed because they couldn’t find a job or pay their bills, then a career counselor should be a part of the rehabilitation plan.”

Yadav added, “If you just treat the condition medically, once they go back into the real world, since the causative issue still remains, they’re likely to relapse.”

Source: Penn State

AI Algorithm May Help ID Homeless Youth at Risk for Substance Abuse

Traci Pedersen

Traci Pedersen is a professional writer with over a decade of experience. Her work consists of writing for both print and online publishers in a variety of genres including science chapter books, college and career articles, and elementary school curriculum.

APA Reference
Pedersen, T. (2020). AI Algorithm May Help ID Homeless Youth at Risk for Substance Abuse. Psych Central. Retrieved on November 30, 2020, from
Scientifically Reviewed
Last updated: 18 Aug 2020 (Originally: 18 Aug 2020)
Last reviewed: By a member of our scientific advisory board on 18 Aug 2020
Published on Psych All rights reserved.