Home » News » Role of REM Versus Non-REM Sleep on Learning

Role of REM Versus Non-REM Sleep on Learning

New research evaluates which sleep stage is most important for learning: REM or non-REM. In the new study investigators looked at two mechanisms. Does sleep improve learning by enhancing skills while people snooze, or does the sleep benefit arise from reinforcing those skills in the brain so that they’re less likely to forget them?

The answer, according to the Brown University study on visual learning, is “all of the above.”

“Sleep is good for many processes in the body and mind, but the controversy was how sleep is good,” said corresponding author Yuka Sasaki, a professor of cognitive, linguistic and psychological sciences (research) at Brown.

“Do non-REM sleep and REM sleep make different contributions, or does the sleep stage not matter? We think we have one answer, because we clearly show the difference in the roles of non-REM sleep and REM sleep in visual perceptual learning.”

In the study, young adults were trained to identify a letter and the orientation of a set of lines on a textured background in two different tasks: one before sleep and one after sleep. Between the two tasks, the researchers analyzed the participants’ brain waves while they were sleeping. They also simultaneously measured the concentrations of two different chemicals in their brains: an excitatory neurotransmitter called glutamate and an inhibitory neurotransmitter called gamma-aminobutyric acid.

Separately, the researchers performed the same analyses on people who did not participate in the visual learning tasks.

By measuring the ratio of these two chemicals in the brain — called the excitation/inhibition (E/I) balance — scientists can gather clues about the state of a particular brain area.

Sometimes, such as when a brain area has a high E/I balance, neurons are actively forming new connections, which means that the brain area has a high degree of plasticity.

Conversely, when a brain area has low E/I balance, it is said to be in a state of stabilization. During stabilization, less important neural connections are pruned away, thereby increasing the efficiency and resiliency of the connections that remain. Both plasticity and stabilization are integral to the learning process: Plasticity typically translates to performance gains, and stabilization prevents new learning from being overwritten or interfered with by future learning.

This new study, which appears in Nature Neuroscience, found that plasticity and stabilization occur during different stages of sleep.

During non-REM (NREM) sleep, the visual areas of participants’ brains exhibited an E/I balance suggestive of increased plasticity. The pattern was found even among participants who did not partake in the visual learning tasks, which means that it occurs even in the absence of learning.

However, the REM stage appears to be necessary for people to reap the benefits of the increased plasticity they exhibit during NREM sleep. During REM sleep, the chemical concentrations in participants’ brains indicated that their visual areas underwent stabilization.

Investigators discovered this process occurred only in the participants who partook in the visual learning tasks, which suggests that, in contrast to plasticity, stabilization during sleep occurs only in the presence of learning.

Participants who only underwent NREM sleep did not exhibit any performance gains, likely because the new, post-sleep task interfered with their learning of the pre-sleep task. Conversely, those who underwent both NREM and REM sleep exhibited significant performance gains for both the pre-sleep and post-sleep task.

“I hope this helps people realize that both non-REM sleep and REM sleep are important for learning,” Sasaki said. “When people sleep at night, there are many sleep cycles. REM sleep appears at least three, four, five times, and especially in the later part of the night. We want to have lots of REM sleep to help us remember more robustly, so we shouldn’t shorten our sleep.”

Going forward, Sasaki and her colleagues would like to see if their findings can be generalized to other types of learning. They would also like to combine this research with their past research on visual perceptual learning and reward.

“Previously, we showed that reward enhances visual learning through sleep, so we’d like to understand how that works,” she said. “It’s ambitious, but maybe we could expand this research to other types of learning so we could remember better and develop better motor learning, better visual skills and better creativity.”

Source: Brown University

Role of REM Versus Non-REM Sleep on Learning

Rick Nauert PhD

Rick Nauert, PhDDr. Rick Nauert has over 25 years experience in clinical, administrative and academic healthcare. He is currently an associate professor for Rocky Mountain University of Health Professionals doctoral program in health promotion and wellness. Dr. Nauert began his career as a clinical physical therapist and served as a regional manager for a publicly traded multidisciplinary rehabilitation agency for 12 years. He has masters degrees in health-fitness management and healthcare administration and a doctoral degree from The University of Texas at Austin focused on health care informatics, health administration, health education and health policy. His research efforts included the area of telehealth with a specialty in disease management.

APA Reference
Nauert PhD, R. (2020). Role of REM Versus Non-REM Sleep on Learning. Psych Central. Retrieved on November 23, 2020, from
Scientifically Reviewed
Last updated: 31 Jul 2020 (Originally: 31 Jul 2020)
Last reviewed: By a member of our scientific advisory board on 31 Jul 2020
Published on Psych All rights reserved.