Home » News » Video Games Can Be Powerful Tools for Cognitive Training
Friendships Ease Depression in Heavy Gamers

Video Games Can Be Powerful Tools for Cognitive Training

A new study finds that expert players of action real-time strategy video games, such as World of Warcraft, become better at allocating brain resources between visual stimuli that compete for attention.

The video games, which are won through strategic planning, selective attention, sensorimotor skills and teamwork, place considerable demands on the brain, according to researchers.

Previous research has shown that playing video games can improve cognitive development, such as greater sensitivity to contrasts, better eye-to-hand coordination, and superior memory. But researchers note the long-term effects of gaming on a key cognitive function called temporal visual selective attention — the capacity to distinguish between important and irrelevant information within a rapid stream of visual stimuli — has never been studied.

In a new study, researchers show for the first time that expert players of real-time strategy games have faster information processing, allocate more cognitive power to individual visual stimuli, and allocate limited cognitive resources between successive stimuli more effectively through time.

These findings, published in Frontiers in Human Neuroscience, suggest that playing these games can cause long-term changes in the brain and lead to an improvement in temporal visual selective attention, according to the researchers.

“Our aim was to evaluate the long-term effect of experience with action real-time strategy games on temporal visual selective attention,” said author Dr. Diankun Gong, an associate professor in the Ministry of Education Key Laboratory for Neuroinformation at the University of Electronic Science and Technology of China.

“In particular, we wanted to reveal the time course of cognitive processes during the attentional blink task, a typical task used by neuroscientists to study visual selective attention.”

Attentional blink is the tendency of focused observers to “blink” — to fail to properly register — a visual stimulus if it appears so quickly after a previous stimulus that cognitive processing of the first hasn’t finished, the researchers explained. In a typical blink task, people are shown a stream of digits and letters in quick succession and asked to press a button each time they see one of two target letters (for example D and M).

People often “blink” a second target if it appears within 200-500 milliseconds of the first, the researchers noted. Electroencephalograms (EEGs) suggest that this is due to competition for cognitive resources between the first stimulus — with the need to encode it in working and episodic memory, and to select the appropriate response — versus the second.

In other words, people often fail to register M because brain resources are temporarily used up by the ongoing need to process any D shown more than 200 ms and less than 500 ms earlier, the researchers said.

To study the effect of gaming on temporal visual selective attention, the researchers recruited 38 healthy young male students from the University of Electronic Science and Technology for their experiment.

Half of the volunteers were expert players of the typical action real-time strategy game League of Legends, where teammates work together to destroy the towers of an opposing team. They had played the game for at least two years and were masters, based on their ranking among the top 7 percent of players.

The others were beginners, with less than six months experience of the same game, and ranked among the bottom 30 percent to 45 percent.

All volunteers were seated in front of a screen and tested in a blink task, with 480 trials over a period of approximately two hours.

The greater a volunteer’s tendency to “blink” targets, the less frequently he would press the correct button when one of the two targets appeared on the screen, and the worse he did overall in the task.

The volunteers also wore EEG electrodes on the sides and top of their scalps, allowing the researchers to measure and localize the brain’s activity throughout the experiment. These electrodes recorded Event-Related Potentials (ERPs), tiny electric potentials (from -6 to 10 μV) that last from 0 to 800 ms after each non-blinked stimulus, and which represent the neural processes for registering and consolidating its memory, the researchers explained.

The researchers focused on the so-called P3b phase of the ERP, a peak between 200 and 500 ms after the stimulus, because previous research has shown that its timing and amplitude accurately reflects performance in the blink task. The later P3b occurs and the less pronounced it is, the more likely it is that a stimulus will be “blinked,” researchers explained.

“We found that expert League of Legends players outperformed beginners in the task. The experts were less prone to the blink effect, detecting targets more accurately and faster, and as shown by their stronger P3b, gave more attentional cognitive resources to each target,” said coauthor Dr. Weiyi Ma, an assistant professor in Human Development and Family Sciences at the University of Arkansas in the United States.

“Our results suggest that long-term experience of action real-time strategy games leads to improvements in temporal visual selective attention. The expert gamers had become more effective in distributing limited cognitive resources between successive visual targets,” said author Dr. Tiejun Liu of the University of Electronic Science and Technology of China. “We conclude that such games can be a powerful tool for cognitive training.”

Source: Frontiers

Video Games Can Be Powerful Tools for Cognitive Training

Janice Wood

Janice Wood is a long-time writer and editor who began working at a daily newspaper before graduating from college. She has worked at a variety of newspapers, magazines and websites, covering everything from aviation to finance to healthcare.

APA Reference
Wood, J. (2020). Video Games Can Be Powerful Tools for Cognitive Training. Psych Central. Retrieved on October 1, 2020, from
Scientifically Reviewed
Last updated: 12 Apr 2020 (Originally: 12 Apr 2020)
Last reviewed: By a member of our scientific advisory board on 12 Apr 2020
Published on Psych All rights reserved.