advertisement
Home » News » New Technique May Aid Diagnosis of Autism

New Technique May Aid Diagnosis of Autism

While prevention of autism remains elusive, early detection of autism can make a significant difference in the lives of children and their families. New research utilizes an infrared eye-tracking device to help improve the accuracy and timeliness for detection of autism spectrum disorder (ASD) in children.

In the study, University of Waterloo researchers characterized how children with ASD scan a person’s face differently than a neuro-typical child. Based on the findings, investigators were able to develop a technique that considers how a child with ASD transitions his or her gaze from one part of a person’s face to another.

According to the developers, the use of this technology makes the diagnostic process less stressful for the children and if combined with existing manual methods could help doctors better avoid a false positive autism diagnosis.

The study appears in the journal Computers in Biology and Medicine.

“Many people are suffering from autism, and we need early diagnosis especially in children,” said Mehrshad Sadria, a graduate student in Waterloo’s Department of Applied Mathematics.

“The current approaches to determining if someone has autism are not really child-friendly. Our method allows for the diagnosis to be made more easily and with less possibility of mistakes.

“The new technique can be used in all ASD diagnosis, but we believe it’s particularly effective for children.”

In developing the new technique, the researchers evaluated 17 children with ASD and 23 neuro-typical children. The mean chronological ages of the ASD and neuro-typical groups were 5.5 and 4.8, respectively.

Each participant was shown 44 photographs of faces on a 19-inch screen, integrated into an eye-tracking system. The infrared device interpreted and identified the locations on the stimuli at which each child was looking via emission and reflection of wave from the iris.

The images were separated into seven key areas of interest (AOIs) in which participants focused their gaze: under the right eye, right eye, under the left eye, left eye, nose, mouth and other parts of the screen.

The researchers wanted to know more than how much time the participants spent looking at each AOI, but also how they moved their eyes and scan the faces. To get that information, the researchers used four different concepts from network analysis to evaluate the varying degree of importance the children placed on the seven AOIs when exploring the facial features.

The first concept determined the number of other AOIs that the participant directly moves their eyes to and from a particular AOI. The second concept looked at how often a particular AOI is involved when the participant moves their eyes between two other AOIs as quickly as possible.

The third concept is related to how quickly one can move their eyes from a particular AOI to other AOIs. The fourth concept measured the importance of an AOI, in the context of eye movement and face scanning, by the number of important AOIs that it shares direct transitions with.

Currently, the two most favored ways of assessing ASD involve a questionnaire or an evaluation from a psychologist.

“It is much easier for children to just look at something, like the animated face of a dog, than to fill out a questionnaire or be evaluated by a psychologist,” said Dr. Anita Layton. Layton is a professor of Applied Mathematics, Pharmacy and Biology at Waterloo and is Sadria’s supervisor.

“Also, the challenge many psychologists face is that sometimes behaviors deteriorate over time, so the child might not display signs of autism, but then a few years later, something starts showing up.

“Our technique is not just about behavior or whether a child is focusing on the mouth or eyes. It’s about how a child looks at everything.”

Source: University of Waterloo

New Technique May Aid Diagnosis of Autism

Rick Nauert PhD

Rick Nauert, PhDDr. Rick Nauert has over 25 years experience in clinical, administrative and academic healthcare. He is currently an associate professor for Rocky Mountain University of Health Professionals doctoral program in health promotion and wellness. Dr. Nauert began his career as a clinical physical therapist and served as a regional manager for a publicly traded multidisciplinary rehabilitation agency for 12 years. He has masters degrees in health-fitness management and healthcare administration and a doctoral degree from The University of Texas at Austin focused on health care informatics, health administration, health education and health policy. His research efforts included the area of telehealth with a specialty in disease management.

APA Reference
Nauert PhD, R. (2019). New Technique May Aid Diagnosis of Autism. Psych Central. Retrieved on September 18, 2019, from https://psychcentral.com/news/2019/07/10/new-technique-may-aid-diagnosis-of-autism/148522.html
Scientifically Reviewed
Last updated: 9 Jul 2019
Last reviewed: By a member of our scientific advisory board on 9 Jul 2019
Published on Psych Central.com. All rights reserved.