advertisement
Home » PTSD » AI-Augmented Voice Analysis AI-Augmented Voice Analysis Helps Diagnose PTSDHelps Diagnose PTSD
AI-Augmented Voice Analysis AI-Augmented Voice Analysis Helps Diagnose PTSDHelps Diagnose PTSD

AI-Augmented Voice Analysis AI-Augmented Voice Analysis Helps Diagnose PTSDHelps Diagnose PTSD

Researchers have developed a specially designed computer program that can help identify and diagnose post-traumatic stress disorder (PTSD) in veterans.

NYU School of Medicine investigators discovered an artificial intelligence tool can distinguish with 89 percent accuracy between the voices of those with or without PTSD. The unique approach is cost-effective and non-intrusive.

“Our findings suggest that speech-based characteristics can be used to diagnose this disease, and with further refinement and validation, may be employed in the clinic in the near future,” said senior study author Charles R. Marmar, M.D., chair of the Department of Psychiatry at NYU School of Medicine.

The study appears in the journal Depression and Anxiety.

Experts share that more than 70 percent of adults worldwide experience a traumatic event at some point in their lives, with up to 12 percent of people in some struggling countries suffering from PTSD. Those with the condition experience strong, persistent distress when reminded of a triggering event.

The study authors say that a PTSD diagnosis is most often determined by clinical interview or a self-report assessment, both inherently prone to biases. This has led to efforts to develop objective, measurable, physical markers of PTSD progression, much like laboratory values for medical conditions, but progress has been slow.

In the current study, the research team used a statistical/machine learning technique, called random forests, that has the ability to “learn” how to classify individuals based on examples. Such AI programs build “decision” rules and mathematical models that enable decision-making with increasing accuracy as the amount of training data grows.

The researchers first recorded standard, hours-long diagnostic interviews, called Clinician-Administered PTSD Scale, or CAPS, of 53 Iraq and Afghanistan veterans with military-service-related PTSD, as well as those of 78 veterans without the disease.

The recordings were then fed into voice software from SRI International, the institute that also invented Siri, to yield a total of 40,526 speech-based features captured in short spurts of talk, which the team’s AI program sifted through for patterns.

The random forest program linked patterns of specific voice features with PTSD, including less clear speech and a lifeless, metallic tone, both of which had long been reported anecdotally as helpful in diagnosis.

Although the current study did not explore the disease mechanisms behind PTSD, the theory is that traumatic events change brain circuits that process emotion and muscle tone, which affects a person’s voice.

The next step is for the research team to train the AI voice tool with more data. They will then further validate the approach on an independent sample, and apply for government approval to use the instrument clinically.

“Speech is an attractive candidate for use in an automated diagnostic system, perhaps as part of a future PTSD smartphone app, because it can be measured cheaply, remotely, and non-intrusively,” says lead author Adam Brown, Ph.D., adjunct assistant professor in the Department of Psychiatry.

“The speech analysis technology used in the current study on PTSD detection falls into the range of capabilities included in our speech analytics platform called SenSay Analytics™,” said Dimitra Vergyri, director of SRI International’s Speech Technology and Research (STAR) Laboratory.

“The software analyzes words — in combination with frequency, rhythm, tone, and articulatory characteristics of speech — to infer the state of the speaker, including emotion, sentiment, cognition, health, mental health and communication quality. The technology has been involved in a series of industry applications visible in startups like Oto, Ambit and Decoded Health.”

Source: NYU/EurekAlert

AI-Augmented Voice Analysis AI-Augmented Voice Analysis Helps Diagnose PTSDHelps Diagnose PTSD

Rick Nauert PhD

Rick Nauert, PhDDr. Rick Nauert has over 25 years experience in clinical, administrative and academic healthcare. He is currently an associate professor for Rocky Mountain University of Health Professionals doctoral program in health promotion and wellness. Dr. Nauert began his career as a clinical physical therapist and served as a regional manager for a publicly traded multidisciplinary rehabilitation agency for 12 years. He has masters degrees in health-fitness management and healthcare administration and a doctoral degree from The University of Texas at Austin focused on health care informatics, health administration, health education and health policy. His research efforts included the area of telehealth with a specialty in disease management.

APA Reference
Nauert PhD, R. (2019). AI-Augmented Voice Analysis AI-Augmented Voice Analysis Helps Diagnose PTSDHelps Diagnose PTSD. Psych Central. Retrieved on May 22, 2019, from https://psychcentral.com/news/2019/04/23/ai-augmented-voice-analysis-helps-diagnose-ptsd/144841.html
Scientifically Reviewed
Last updated: 23 Apr 2019
Last reviewed: By a member of our scientific advisory board on 23 Apr 2019
Published on Psych Central.com. All rights reserved.