advertisement
Home » News » Mouse Study Shows How Lack of Sleep Affects Memory-Making
Mouse Study Shows How Lack of Sleep Affects Memory-Making

Mouse Study Shows How Lack of Sleep Affects Memory-Making

Although scientists have known that a lack of sleep can interfere with the ability to learn and make memories, the precise methods by which this occurs has been obscure.

Researchers were unsure what was preventing the hippocampus — two seahorse-shaped structures located in the temporal lobe of the brain where many long-term memories are made — from doing its job.

Now, in a new study, University of Michigan researchers have found that interfering with sleep-associated oscillations — the rhythmic firing of neurons — in one subsection of the hippocampus is likely the culprit.

Their results are published in Nature Communications.

To test the role of oscillations in memory formation, the researchers, led by graduate student Nicolette Ognjanovski, recorded the baseline hippocampal activity of a group of mice.

They placed mice into a new environment, let them explore, gave them a mild foot shock, then put them back into their home cages to rest and sleep normally.

“If you return the mouse to that same structure a day or even a couple months later, they will have this very stereotyped fear response, which is that they freeze,” said Dr. Sara Aton, an assistant professor and senior author of the paper.

“But if you sleep-deprive an animal for a few hours after that context-shock pairing, the mouse won’t remember it the next day.”

The researchers found that in normally sleeping mice, sleep-associated oscillations in a subsection of the hippocampus called CA1 were more robust after learning.

They then took a new group of mice, recorded their baseline hippocampal activity and had them complete the same task. The researchers also gave these mice a drug to inhibit a small population of inhibitory neurons in CA1 that express parvalbumin, a calcium-binding protein associated with memory dysfunction.

The researchers didn’t change the sleep behavior of the animal — they slept normally. But turning off the activity of parvalbumin-expressing neurons disrupted the rhythmic firing of surrounding CA1 neurons while those animals were asleep.

Suppressing the parvalbumin-expressing cells appeared to completely wipe out the normal learning-associated increase in oscillations in that section of the mouse’s hippocampus.

“There’s an old theorem called Hebb’s Law, which is, ‘Fire together, wire together,'” Aton said. “If you can get two neurons to fire with great regularity in close proximity to each other, it’s very likely you’re going to affect the strength of connections between them.”

When the neurons were kept from firing together regularly and rhythmically, the mice forgot there was any fearful association with their task.

“The dominant oscillatory activity, which is so critical for learning, is controlled by a very small number of the total cell population in the hippocampus,” said Ognjanovski, also a first author of the study.

“This changes the narrative of what we understand about how networks work. The oscillations that parvalbumin cells control are linked to global network changes, or stability. Memories aren’t stored in single cells, but distributed through the network.”

The researchers also compared the stability of the neurons’ connections between the control group and the group whose sleep oscillations were disrupted.

They found that not only were the connections stronger in the control group after their learning trial, but that those neuronal connections were also stronger. These changes were blocked when sleep-associated hippocampal oscillations were experimentally disrupted.

“It seems like this population of neurons that is generating rhythms in the brain during sleep is providing some informational content for reinforcing memories,” Aton said.

“The rhythm itself seems to be the most critical part, and possibly why you need to have sleep in order to form these memories.”

Source: University of Michigan

Mouse Study Shows How Lack of Sleep Affects Memory-Making

Rick Nauert PhD

Rick Nauert, PhDDr. Rick Nauert has over 25 years experience in clinical, administrative and academic healthcare. He is currently an associate professor for Rocky Mountain University of Health Professionals doctoral program in health promotion and wellness. Dr. Nauert began his career as a clinical physical therapist and served as a regional manager for a publicly traded multidisciplinary rehabilitation agency for 12 years. He has masters degrees in health-fitness management and healthcare administration and a doctoral degree from The University of Texas at Austin focused on health care informatics, health administration, health education and health policy. His research efforts included the area of telehealth with a specialty in disease management.

APA Reference
Nauert PhD, R. (2017). Mouse Study Shows How Lack of Sleep Affects Memory-Making. Psych Central. Retrieved on September 19, 2018, from https://psychcentral.com/news/2017/04/10/mice-study-shows-how-sleep-deprivation-affects-memory-making/118897.html

 

Scientifically Reviewed
Last updated: 10 Apr 2017
Last reviewed: By John M. Grohol, Psy.D. on 10 Apr 2017
Published on PsychCentral.com. All rights reserved.