advertisement
Home » News » How Mini-Strokes May Contribute to Dementia
How Mini-Strokes May Contribute to Dementia

How Mini-Strokes May Contribute to Dementia

A recent study by investigators at the Medical University of South Carolina (MUSC) has provided additional evidence for understanding the way in which small strokes damage the brain.

Researchers discovered mini-strokes, called micoinfarcts, can affect a larger area of brain tissue and last longer than was previously thought to be the case.

Until now, the mechanisms by which these miniscule lesions (~0.05 to three millimeters in diameter) contribute to cognitive deficits, including dementia, have been poorly understood.

The functional effects of microinfarcts are extremely difficult to study. Not only are most microinfarcts difficult to detect with standard neuroimaging techniques, mismatches between in vivo functional data and post-mortem histological evidence make it nearly impossible to connect microinfarcts to the timeline of cognitive decline.

“These infarcts are so small and unpredictable, we just haven’t had good tools to detect them while the person was still alive,” said Andy Shih, Ph.D., senior author on the article.

“So, until now, we basically just had post-mortem snapshots of these infarcts at the end of the dementia battle as well as measures of the person’s cognitive decline, which might have been taken years before the brain became available for study.”

Intrigued by the mounting evidence linking cognitive decline and microinfarct burden, Shih’s group hypothesized that microinfarcts might disrupt brain function beyond what was visible by histology or magnetic resonance imaging (MRI).

“Even though a person may experience hundreds of thousands of microinfarcts in their lifetime, each event is extremely small and thought to resolve in a matter of days,” said Shih.

“It’s been estimated that, overall, microinfarcts affect less than two percent of the entire human brain. But those estimates of tissue loss are based only on the ‘core’ of the microinfarct, the area of dead or dying tissue that we can see in routine, post-mortem, histological stains.”

To investigate their theory of broader impacts, the team developed a mouse model so that they could examine the effects of individual cortical microinfarcts on surrounding tissue function in vivo over several weeks post-event.

They discovered functional deficits caused by a single microinfarct occur across a much larger area of viable brain tissue than was previously understood and that the resulting deficits are much longer-lasting.

“I knew larger strokes could have distant effects, but I was surprised that something of this scale could have such a large effect,” said Shih.

The duration of effect from a single microinfarct was also a surprise for Shih’s team.

“The MRI signal increased and then went away as we’d expected, but we were surprised on autopsy to see that there was still lots going on — tissue damage and neuroinflammation,” Shih explained.

“Even after three weeks the neurally evoked blood flow responses had only partially recovered. So, that means a microinfarct can come and go and you can see it briefly with MRI but it leaves a lasting impression on brain function-possibly for months.”

Importantly, a person with vascular disease is likely to experience other microinfarcts during this recovery time. Furthermore, these tiny infarcts occur not only in the brain’s grey matter, where this study was conducted, but also in the white matter, which sends messages from one part of the brain to another.

“Over time, after you have a lot of microinfarcts, there may be enough accumulated damage in the brain’s circuitry to equal the impact of a larger event,” said Shih.

According to Shih, one of the most important messages from this study is that conventional methods used in clinical trials do not reveal the entire impact that microinfarcts have on brain function.

He hopes that his team’s contribution to illuminating microinfarct pathology will help inform MRI interpretation in humans and help researchers better explain some of the relationships that they see in clinical studies.

These findings might also lead to new preventive protocols. “On a clinical level, maybe it’s a situation where therapeutics can play a bigger role. Maybe drugs that we already have can mitigate the cumulative damage of microinfarcts,” speculated Shih.

“The neuro-protective idea hasn’t flown very far for acute stroke, in part, because the window of time for protecting the brain from stroke damage is very narrow. But, for microinfarcts, you don’t have to know exactly when they occur.

If an MRI shows a person is at high risk for microinfarcts, maybe one day we can put them on a drug for a while to reduce the impacts of these lesions.”

Source: Medical University South Carolina/EurekAlert
 
Photo: Dr. Andy Shih is Assistant Professor of Neurosciences at the Medical University of South Carolina and senior author on an article published online on Jan. 16, 2017 by the Journal of Cerebral Blood Flow and Metabolism. The article provides preclinical evidence that ministrokes can have a lasting effect on brain function that could contribute to dementia. Credit: Medical University of South Carolina.

How Mini-Strokes May Contribute to Dementia

Rick Nauert PhD

Rick Nauert, PhDDr. Rick Nauert has over 25 years experience in clinical, administrative and academic healthcare. He is currently an associate professor for Rocky Mountain University of Health Professionals doctoral program in health promotion and wellness. Dr. Nauert began his career as a clinical physical therapist and served as a regional manager for a publicly traded multidisciplinary rehabilitation agency for 12 years. He has masters degrees in health-fitness management and healthcare administration and a doctoral degree from The University of Texas at Austin focused on health care informatics, health administration, health education and health policy. His research efforts included the area of telehealth with a specialty in disease management.

APA Reference
Nauert PhD, R. (2017). How Mini-Strokes May Contribute to Dementia. Psych Central. Retrieved on September 25, 2018, from https://psychcentral.com/news/2017/01/17/effects-of-mini-strokes-contribute-to-dementia/115243.html

 

Scientifically Reviewed
Last updated: 17 Jan 2017
Last reviewed: By John M. Grohol, Psy.D. on 17 Jan 2017
Published on PsychCentral.com. All rights reserved.