advertisement
Home » News » New Computer Technology Identifies Suicidal Behavior from Words
New Computer Technology Identifies Suicidal Behavior from Words

New Computer Technology Identifies Suicidal Behavior from Words

Computer technology known as machine learning can assess a person’s spoken or written words and accurately identify whether that person is suicidal, mentally ill but not suicidal, or neither.

The new computer tool is up to 93 percent accurate in correctly classifying a suicidal person and 85 percent accurate in identifying a person who is suicidal, has a mental illness but is not suicidal, or neither.

These results provide strong evidence for using advanced technology as a decision-support tool to help clinicians and caregivers identify and prevent suicidal behavior, say researchers at Cincinnati Children’s Hospital Medical Center.

“These computational approaches provide novel opportunities to apply technological innovations in suicide care and prevention, and it surely is needed,” says John Pestian, Ph.D., professor in the divisions of Biomedical Informatics and Psychiatry and the study’s lead author.

“When you look around health care facilities, you see tremendous support from technology, but not so much for those who care for mental illness. Only now are our algorithms capable of supporting those caregivers.

This methodology easily can be extended to schools, shelters, youth clubs, juvenile justice centers, and community centers, where earlier identification may help to reduce suicide attempts and deaths.”

The study appears in the journal Suicide and Life-Threatening Behavior, a leading journal for suicide research.

Dr. Pestian and his colleagues enrolled 379 patients in the study between Oct. 2013 and March 2015 from emergency departments and inpatient and outpatient centers at three sites.

Those enrolled included patients who were suicidal, were diagnosed as mentally ill and not suicidal, or neither — serving as a control group.

Each patient completed standardized behavioral rating scales and participated in a semi-structured interview answering five open-ended questions to stimulate conversation, such as “Do you have hope?” “Are you angry?” and “Does it hurt emotionally?”

The researchers extracted and analyzed verbal and non-verbal language from the data. They then used machine learning algorithms to classify the patients into one of the three groups.

The results showed that machine learning algorithms can tell the differences between the groups with up to 93 percent accuracy. The scientists also noticed that the control patients tended to laugh more during interviews, sigh less, and express less anger, less emotional pain and more hope.

Source: Cincinnati Children’s Hospital Medical Center/EurekAlert

New Computer Technology Identifies Suicidal Behavior from Words

Rick Nauert PhD

Rick Nauert, PhDDr. Rick Nauert has over 25 years experience in clinical, administrative and academic healthcare. He is currently an associate professor for Rocky Mountain University of Health Professionals doctoral program in health promotion and wellness. Dr. Nauert began his career as a clinical physical therapist and served as a regional manager for a publicly traded multidisciplinary rehabilitation agency for 12 years. He has masters degrees in health-fitness management and healthcare administration and a doctoral degree from The University of Texas at Austin focused on health care informatics, health administration, health education and health policy. His research efforts included the area of telehealth with a specialty in disease management.

APA Reference
Nauert PhD, R. (2016). New Computer Technology Identifies Suicidal Behavior from Words. Psych Central. Retrieved on August 16, 2018, from https://psychcentral.com/news/2016/11/08/new-computer-technology-identifies-suicidal-behavior-from-words/112233.html

 

Scientifically Reviewed
Last updated: 8 Nov 2016
Last reviewed: By John M. Grohol, Psy.D. on 8 Nov 2016
Published on PsychCentral.com. All rights reserved.