Home » Depression » Mice Study Suggests Link between Gut Bacteria and Risk of PTSD, Mood Disorders
Mice Study Suggests Link between Gut Bacteria and Risk of PTSD, Mood Disorders

Mice Study Suggests Link between Gut Bacteria and Risk of PTSD, Mood Disorders

New research suggests intestinal bacteria can influence the way the brain responds to stressful situations.

Dr. John Bienenstock and Dr. Paul Forsythe — who work in the Brain-Body Institute at McMaster University in Ontario, Canada believe gut bacteria could be used to cure or prevent neurological conditions such as post-traumatic stress disorder (PTSD), anxiety and depression.

The study is sponsored by the Office of Naval research (ONR).

“This is extremely important work for U.S. warfighters because it suggests that gut microbes play a strong role in the body’s response to stressful situations, as well as in who might be susceptible to conditions like PTSD,” said Dr. Linda Chrisey, a program officer in ONR’s Warfighter Performance Department.

Researchers explain that the trillions of microbes in the intestinal tract, collectively known as the gut microbiome, profoundly impact human biology. The bacteria play an active role in digesting food, regulating the immune system and even transmitting signals to the brain that alter mood and behavior.

ONR believes the research will increase warfighters’ mental and physical resilience in situations involving dietary changes, sleep loss, or disrupted circadian rhythms (from shifting time zones or living in submarines).

Through research on laboratory mice, Bienenstock and Forsythe have shown that gut bacteria seriously affect mood and demeanor. They also were able to control the moods of anxious mice by feeding them healthy microbes from fecal material collected from calm mice.

Bienenstock and Forsythe used a “social defeat” scenario in which smaller mice were exposed to larger, more aggressive ones for a couple of minutes daily for 10 consecutive days.

The smaller mice showed signs of heightened anxiety and stress — nervous shaking, diminished appetite, and less social interaction with other mice. The researchers then collected fecal samples from the stressed mice and compared them to those from calm mice.

“What we found was an imbalance in the gut microbiota of the stressed mice,” said Forsythe.

“There was less diversity in the types of bacteria present. The gut and bowels are a very complex ecology. The less diversity, the greater disruption to the body.”

Bienenstock and Forsythe then fed the stressed mice the same probiotics (live bacteria) found in the calm mice and examined the new fecal samples. Through magnetic resonance spectroscopy (MRS), a non-invasive analytical technique using powerful MRI technology, they also studied changes in brain chemistry.

“Not only did the behavior of the mice improve dramatically with the probiotic treatment,” said Bienenstock, “but it continued to get better for several weeks afterward. Also, the MRS technology enabled us to see certain chemical biomarkers in the brain when the mice were stressed and when they were taking the probiotics.”

The biomarkers may be a key to detecting risk and suggesting proactive therapy.

Both researchers said stress biomarkers could potentially indicate if someone is suffering from PTSD or risks developing it, allowing for treatment or prevention with probiotics and antibiotics.

Later this year, Bienenstock and Forsythe hope to secure funding to conduct clinical trials to administer probiotics to human volunteers and use MRS to monitor brain reactions to different stress levels.

ONR explains that the analysis of gut microbiology is part of a program in warfighter performance. Researchers are also looking at the use of synthetic biology to enhance the gut microbiome.

Synthetic biology creates or re-engineers microbes or other organisms to perform specific tasks like improving health and physical performance. The field was identified as a top ONR priority because of its potential far-ranging impact on warfighter performance and fleet capabilities.

Source: ONR
Human anatomy focusing on stomach photo by shutterstock.

Mice Study Suggests Link between Gut Bacteria and Risk of PTSD, Mood Disorders

Rick Nauert PhD

Rick Nauert, PhDDr. Rick Nauert has over 25 years experience in clinical, administrative and academic healthcare. He is currently an associate professor for Rocky Mountain University of Health Professionals doctoral program in health promotion and wellness. Dr. Nauert began his career as a clinical physical therapist and served as a regional manager for a publicly traded multidisciplinary rehabilitation agency for 12 years. He has masters degrees in health-fitness management and healthcare administration and a doctoral degree from The University of Texas at Austin focused on health care informatics, health administration, health education and health policy. His research efforts included the area of telehealth with a specialty in disease management.

APA Reference
Nauert PhD, R. (2018). Mice Study Suggests Link between Gut Bacteria and Risk of PTSD, Mood Disorders. Psych Central. Retrieved on October 28, 2020, from
Scientifically Reviewed
Last updated: 8 Aug 2018 (Originally: 26 Apr 2016)
Last reviewed: By a member of our scientific advisory board on 8 Aug 2018
Published on Psych All rights reserved.