Home » News » Study May Open New Avenues for ALS Drugs
Study Opens New Avenues for ALS Drugs

Study May Open New Avenues for ALS Drugs

Researchers at the University of North Carolina School (UNC) of Medicine have pinned down the structure of toxic clumps of protein thought to be important in amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, a fatal neurodegenerative condition.

The new study’s findings could be a crucial step toward developing drugs to stop the creation of the clumps and stem the progression of the disease, according to researchers.

Cures for ALS and other neurodegenerative diseases have long eluded scientists, largely because their causes are unknown.

“One of the biggest puzzles in health care is how to address neurodegenerative diseases. Unlike many cancers and other conditions, we currently have no leverage against these neurodegenerative diseases,” said senior study author Nikolay Dokholyan, Ph.D., the Michael Hooker Distinguished Professor of Biochemistry and Biophysics at UNC.

“This study is a big breakthrough because it sheds light on the origin of motor neuron death and could be very important for drug discovery.”

Patients with ALS suffer gradual paralysis and early death as a result of the loss of motor neurons, which are crucial to moving, speaking, swallowing, and breathing.

The study focuses on a subset of ALS cases — an estimated one to two percent — that are associated with variations in a protein known as SOD1. However, even in patients without mutations in their SOD1 gene, this protein has been shown to form potentially toxic clumps.

The researchers discovered that the protein forms temporary clumps of three, known as a “trimer,” and that these clumps are capable of killing motor neuron-like cells grown in the laboratory.

“This is a major step because nobody has known exactly what toxic interactions are behind the death of motor neurons in patients with ALS,” said Elizabeth Proctor, Ph.D., a graduate student in Dokholyan’s laboratory at the time of the study and the paper’s first author.

“Knowing what these trimers look like, we can try to design drugs that would stop them from forming, or sequester them before they can do damage,” she said. “We are very excited about the possibilities.”

Researchers zeroed in on SOD1 after genetic mutations affecting the protein were linked with ALS in the early 1990s. But the exact form of aggregated protein that is responsible for killing neurons has been hard to identify, and many of the clumps that are thought to be toxic disintegrate almost as soon as they form, making them exceedingly difficult to study, the researchers noted.

“It is thought that part of what makes them so toxic is their instability,” said Proctor, who is now a postdoctoral researcher at Massachusetts Institute of Technology. “Their unstable nature makes them more reactive with parts of the cell that they should not be affecting.”

Until now, researchers did not know what these fleeting clumps looked like or how they might affect cells.

To crack the mystery, the research team used a combination of computational modeling and experiments in live cells.

Proctor spent two years developing a custom algorithm to determine the trimers’ structure, an aspect of the study Dokholyan called “an outstanding tour de force.” He described it as akin to mapping the structure of a ball of yarn after taking snippets of just its outermost layer and then figuring out how they fit together.

Once the structure was established, the team spent several more years developing methods to test the trimers’ effects on motor neuron-like cells grown in the laboratory. The results were clear: SOD1 proteins that were tightly bound into trimers were lethal to the motor neuron-like cells, while non-clumped SOD1 proteins were not, according to the researchers.

The researchers plan to further investigate the “glue” that holds the trimers together to find drugs that could break them apart or keep them from forming.

In addition, these findings could help shed light on other neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s, the researchers noted.

“There are many similarities among neurodegenerative diseases,” said Dokholyan. “What we have found here seems to corroborate what is known about Alzheimer’s already, and if we can figure out more about what is going on here, we could potentially open up a framework to be able to understand the roots of other neurodegenerative diseases.”

The study, funded through grants from the National Institutes of Health, was published in Proceedings of the National Academy of Sciences.

Source: University of North Carolina Health Care 

Neurons photo by shutterstock.

Study May Open New Avenues for ALS Drugs

Janice Wood

Janice Wood is a long-time writer and editor who began working at a daily newspaper before graduating from college. She has worked at a variety of newspapers, magazines and websites, covering everything from aviation to finance to healthcare.

APA Reference
Wood, J. (2018). Study May Open New Avenues for ALS Drugs. Psych Central. Retrieved on September 26, 2020, from
Scientifically Reviewed
Last updated: 8 Aug 2018 (Originally: 28 Dec 2015)
Last reviewed: By a member of our scientific advisory board on 8 Aug 2018
Published on Psych All rights reserved.