Home » News » Honing Neurofeedback To Turn Thoughts into Actions

Honing Neurofeedback To Turn Thoughts into Actions

Honing Neurofeedback To Turn Thoughts into Actions New advances in neurofeedback techniques and brain-computer interfaces go a long way toward making science fiction a reality for those with brain injuries, psychiatric and neurological disorders.

Researchers say new technology allows an individual to reduce the signal-to-noise ratio of the brain activity underlying our thoughts allowing improved clarity of thought.

Stephen LaConte, Ph.D., an assistant professor at the Virginia Tech Carilion Research Institute, and his colleagues have advanced real-time functional magnetic resonance imaging. This relatively new technology can convert thought into action by transferring noninvasive measurements of human brain activity into signals that drive physical devices and computer displays.

Crucially, for the ultimate goal of treating disorders of the brain, this rudimentary form of mind reading enables neurofeedback.

“Our brains control overt actions that allow us to interact directly with our environments, whether by swinging an arm or singing an aria,” LaConte said. “Covert mental activities, on the other hand — such as visual imagery, inner language, or recollections of the past — can’t be observed by others and don’t necessarily translate into action in the outside world.”

But, LaConte added, brain–computer interfaces now enable us to eavesdrop on previously undetectable mental activities.

In the recent study, the scientists used whole-brain real-time functional magnetic resonance imaging to understand the neural underpinnings of brain-computer interface control.

The research team asked two dozen subjects to control a visual interface by silently counting numbers at fast and slow rates.

For half the tasks, the subjects were told to use their thoughts to control the movement of the needle on the device they were observing; for the other tasks, they simply watched the needle.

The scientists discovered a feedback effect that LaConte said he had long suspected existed: The subjects who were in control of the needle achieved a better whole-brain signal-to-noise ratio than those who simply watched the needle move.

“When the subjects were performing the counting task without feedback, they did a pretty good job,” LaConte said.

“But when they were doing it with feedback, we saw increases in the signal-to-noise ratio of the entire brain. This improved clarity could mean that the signal was sharpening, the noise was dropping, or both. I suspect the brain was becoming less noisy, allowing the subject to concentrate on the task at hand.”

The scientists also found that the act of controlling the computer-brain interface led to an increased classification accuracy, which corresponded with improvements in the whole-brain signal-to-noise ratio.

This enhanced signal-to-noise ratio, LaConte added, carries implications for brain rehabilitation.

“When people undergoing real-time brain scans get feedback on their own brain activity patterns, they can devise ways to exert greater control of their mental processes,” LaConte said.

“This, in turn, gives them the opportunity to aid in their own healing. Ultimately, we want to use this effect to find better ways to treat brain injuries and psychiatric and neurological disorders.”

“Dr. LaConte’s discovery represents a milestone in the development of noninvasive brain imaging approaches with potential for neurorehabilitation,” said Michael Friedlander, Ph.D., a VT neuroscientist who specializes in brain plasticity.

“This research carries implications for people whose brains have been damaged, such as through traumatic injury or stroke, in ways that affect the motor system — how they walk, move an arm, or speak, for example.

“Dr. LaConte’s innovations with real-time functional brain imaging are helping to set the stage for the future, for capturing covert brain activity and creating better computer interfaces that can help people retrain their own brains.”

Source: Virginia Tech

Abstract of the human brain photo by shutterstock.

Honing Neurofeedback To Turn Thoughts into Actions

Rick Nauert PhD

Rick Nauert, PhDDr. Rick Nauert has over 25 years experience in clinical, administrative and academic healthcare. He is currently an associate professor for Rocky Mountain University of Health Professionals doctoral program in health promotion and wellness. Dr. Nauert began his career as a clinical physical therapist and served as a regional manager for a publicly traded multidisciplinary rehabilitation agency for 12 years. He has masters degrees in health-fitness management and healthcare administration and a doctoral degree from The University of Texas at Austin focused on health care informatics, health administration, health education and health policy. His research efforts included the area of telehealth with a specialty in disease management.

APA Reference
Nauert PhD, R. (2018). Honing Neurofeedback To Turn Thoughts into Actions. Psych Central. Retrieved on November 30, 2020, from
Scientifically Reviewed
Last updated: 8 Aug 2018 (Originally: 23 Sep 2013)
Last reviewed: By a member of our scientific advisory board on 8 Aug 2018
Published on Psych All rights reserved.