advertisement
Home » News » Improving Innovation by Reinterpreting the Familiar

Improving Innovation by Reinterpreting the Familiar

Improving Innovation by Reinterpreting the FamiliarWhile the talent for creativity and invention appear to be a genetic endowment, an individuals’ proclivity to innovation can be enhanced.

Dr. Anthony McCaffrey, a cognitive psychologist at the University of Massachusetts Amherst, admits that although the “aha moments” are rare, his Obscure Features Hypothesis (OFH) has led to the first systematic, step-by-step approach to devising innovation-enhancing techniques.

McCaffrey recently won a two-year, $170,000 grant from the National Science Foundation to turn his technique into software with a user-friendly graphical interface.

McCaffrey reviewed more than 100 significant modern and 1,000 historical inventions and analyzed how successful inventors overcame various cognitive obstacles to uncover the key obscure information needed to solve problems.

He found that almost all innovative solutions follow two steps: Noticing an infrequently seen, obscure feature and second, building a solution based on that feature.

“I detected a pattern suggesting that something everyone else had overlooked often became the basis of an inventive solution,” he says. This revelation led McCaffrey to study aspects of human perception and cognition that inhibit our noticing obscure features.

“I felt that if I could understand why people overlook certain things, then develop techniques for them to notice much more readily what they were overlooking, I might have a chance to improve creativity.”

Psychologists use the term “functional fixedness” to describe the first mental obstacle McCaffrey investigated. It explains, for example, how one person finding burrs stuck to his sweater will typically say, “Ugh, a burr,” while another might say, “Hmmm, two things lightly fastened together. I think I’ll invent Velcro!”

The first view is clouded by focusing on an object’s typical function. To overcome functional fixedness, McCaffrey sought a way to teach people to reinterpret known information about common objects.

For each part of an object, the “generic parts technique” (GPT) asks users to list function-free descriptions, including its material, shape and size. Using this, the prongs of an electrical plug can be described in a function-free way to reveal that they might be used as a screwdriver, for example.

“The trick is how to unconceal the features relevant to your purposes,” McCaffrey points out.

The result of creating the function-free parts list is a tree diagram in which the description of each part does not imply a use, helping subjects see beyond common functions of any object and its parts.

McCaffrey designed an experiment to test whether GPT improved problem=solving in a group of 14 undergraduates trained in GPT compared to a control group of 14 who were not. Both groups were given insight problems commonly used in psychological testing, plus new ones designed by McCaffrey’s colleagues.

Overall, the GPT group solved 67.4 percent more problems than the control group, a dramatic and statistically significant improvement in performance. In a follow-up study asking subjects to list features for the same objects (independent of a problem), GPT-trained subjects listed the key obscure feature required for the solution 75 percent of the time compared to 27 percent for controls.

This suggests it is not mere exposure to problems but rather the GPT that leads to uncovering the key obscure feature more often.

McCaffrey believes his philosophy background helps him think about problems from a broad perspective. In Nietzsche, McCaffrey found his broad definition of “feature” that doesn’t limit a theory of creativity. From Heidegger, he borrowed the notion of “unconcealment,” the idea that any object can have an unlimited number of features that are gradually unconcealed within an endless array of contexts.

McCaffrey’s goal is to help people to notice things consciously that they might not otherwise see, and remain open to the possibilities.

“Noticing is one thing, and building on it or connecting it to other things is the next step,” he said. “Some of this can be learned, and we now have a discipline for it.”

He plans to publish a series of innovation-enhancing techniques to address as many as two dozen distinct creativity blocks caused by the normal function of our perceptual and cognitive systems.

His findings appear now in an early online issue of Psychological Science.

Source: UMass Amherst

Man with light bulb over his head by shutterstock.

Improving Innovation by Reinterpreting the Familiar

Rick Nauert PhD

Rick Nauert, PhDDr. Rick Nauert has over 25 years experience in clinical, administrative and academic healthcare. He is currently an associate professor for Rocky Mountain University of Health Professionals doctoral program in health promotion and wellness. Dr. Nauert began his career as a clinical physical therapist and served as a regional manager for a publicly traded multidisciplinary rehabilitation agency for 12 years. He has masters degrees in health-fitness management and healthcare administration and a doctoral degree from The University of Texas at Austin focused on health care informatics, health administration, health education and health policy. His research efforts included the area of telehealth with a specialty in disease management.

APA Reference
Nauert PhD, R. (2015). Improving Innovation by Reinterpreting the Familiar. Psych Central. Retrieved on December 17, 2018, from https://psychcentral.com/news/2012/02/10/improving-innovation-by-reinterpreting-the-familiar/34698.html

 

Scientifically Reviewed
Last updated: 6 Oct 2015
Last reviewed: By John M. Grohol, Psy.D. on 6 Oct 2015
Published on PsychCentral.com. All rights reserved.