MicroRNAs, alternative splicing and the muscle proteome

As reported in the January 1 issue of G&D, a UCLA research team led by Dr. Douglas Black has shown how microRNAs regulate alternative splicing during muscle development. The researchers determined that the muscle-specific microRNA miR-133 targets the alternative splicing factor, nPTB, during early myogenesis. The resulting decrease in nPTB protein levels alters the splicing of muscle-specific mRNAs in such a way as to promote muscle cell differentiation. The targeting of this splicing factor allows the microRNA to control a larger temporal program of muscle cell gene expression through not just the direct translational regulation of mRNAs, but also by altering the splicing of important mRNAs.

###

Last reviewed: By John M. Grohol, Psy.D. on 21 Feb 2009
    Published on PsychCentral.com. All rights reserved.

 

 

Respect ... is appreciation of the separateness of the other person, of the ways in which he or she is unique.
-- Annie Gottlier