What lies beneath: Petroleum targets unearthed by UH professor

Kristopher Innanen earns Karcher Award for contributions to seismic research

Kristopher Innanen, an assistant professor of physics at UH, is the 2006 recipient of the J. Clarence Karcher Award from the Society of Exploration Geophysicists. Only the second from UH...
Click here for more information.

HOUSTON, Nov. 15, 2006 Enhancing ways to detect petroleum targets has earned one University of Houston scientist high international honors.

Kristopher Innanen, an assistant professor of physics at UH, received the J. Clarence Karcher Award from the Society of Exploration Geophysicists (SEG) during the SEG International Exposition and 76th Annual Meeting in New Orleans last month. Only the second from UH to receive this top honor, Innanen was given the Karcher award to recognize his significant contributions as a young geophysicist of outstanding abilities under the age of 35.

"He has developed algorithms to locate petroleum targets and create high-resolution pictures of the Earth's subsurface without any prior knowledge about what lies above the target," said Cullen Distinguished Professor of Physics Arthur Weglein. "It has been my good fortune to have the opportunity to work with many outstanding colleagues and students over the years, and Kris Innanen has both led and made tremendous individual contributions to the history of high-impact fundamental seismic research."

This is the second year in a row that a researcher from the UH Mission-Oriented Seismic Research Program (M-OSRP) under the direction of Weglein has been selected for the Karcher for innovations in seismic technology in oil and gas exploration. Last year, Simon A. Shaw, a 2005 UH geosciences Ph.D. graduate, was the recipient. See related release at http://www.uh.edu/admin/media/nr/2005/07july/071905sshaw_award.html.

Specifically, Innanen was recognized for his work on the development and implementation of algorithms that process reflection seismic data. The goal of this research is to pinpoint the location of potential hydrocarbon targets beneath the Earth's surface, particularly when there is little accurate prior knowledge about the subsurface and when the medium is structurally complex.

"We are making progress and are very encouraged with these prototype algorithms, whose potential is to act in complex regions and regions that are difficult to characterize," Innanen said. "Since these algorithms are all very non-linear in that they essentially involve the measured data being repeatedly multiplied by themselves it has become useful in our group to think of the processing as 'data talking to data.' Whether we're working on extending and implementing multiple removal algorithms or developing algorithms for locating and resolving subsurface structure, at the end of the day, the fascination lies in understanding the inter-data conversations and separating out the ones for the job at hand."

Previous work by Weglein and his students and collaborators involved developing algorithms that make it possible to eliminate multiples a form of coherent noise from seismic data and to locate and determine subsurface structure in the absence of a velocity model. The algorithms for removing multiples are considered the most comprehensive and effective now in use throughout the industry.

"Kris Innanen has contributed to this technical campaign since his graduate student days and postdoctoral fellowship at the University of British Columbia, as well as for the past year as a new faculty member of the UH physics department and M-OSRP," Weglein said. "He has advanced the concept, algorithmic development and depth-imaging capability for processing primaries to accommodate a larger contrast between the actual earth and a chosen reference medium. This is a significant accomplishment and important milestone toward field data application."

Innanen's contribution progressed and extended the application domain of the earlier velocity independent depth-imaging algorithm developed by Shaw and his collaborators. Innanen also pioneered the concept and construction of inverse scattering algorithms for an absorptive, anelastic earth, leading efforts to implement computationally intensive multiple removal algorithms. The multiple removal methods are in broad industry use, while the processing objectives for an anelastic earth are still in the research stage. Derived from the inverse scattering series, the algorithms being developed by Innanen and his M-OSRP colleagues, Weglein said, are unique because currently no direct method exists to find hydrocarbon targets when the structure above the target is complex and unknown.

Innanen received his Ph.D. in 2003 from the University of British Columbia in Vancouver and completed bachelor's and master's degrees of science at York University in Toronto. He began his UH career as a research assistant professor in the physics department and has been a member of the research personnel in M-OSRP since 2001. He is now an assistant professor in the same department. Innanen has received numerous honors, such as the Canadian Remote Sensing Society Award for Best Master's Thesis from the Canadian Aeronautics and Space Institute in 1999.

M-OSRP is a research program and petroleum industry consortium, started in January 2001 at UH, to address problems with solutions that would have the most significant positive impact on the ability to locate and produce hydrocarbons. For more information, visit http://www.mosrp.uh.edu/.


About the University of Houston

The University of Houston, Texas' premier metropolitan research and teaching institution, is home to more than 40 research centers and institutes and sponsors more than 300 partnerships with corporate, civic and governmental entities. UH, the most diverse research university in the country, stands at the forefront of education, research and service with more than 35,000 students.

About the College of Natural Sciences and Mathematics

The UH College of Natural Sciences and Mathematics, with nearly 400 faculty members and approximately 4,000 students, offers bachelor's, master's and doctoral degrees in the natural sciences, computational sciences and mathematics. Faculty members in the departments of biology and biochemistry, chemistry, computer science, geosciences, mathematics and physics have internationally recognized collaborative research programs in association with UH interdisciplinary research centers, Texas Medical Center institutions and national laboratories.

For more information about UH, visit the university's Newsroom at www.uh.edu/newsroom.

To receive UH science news via e-mail, visit www.uh.edu/admin/media/sciencelist.html.

Last reviewed: By John M. Grohol, Psy.D. on 21 Feb 2009
    Published on PsychCentral.com. All rights reserved.



We cannot do great things on this earth. We can only do small things with great love.
-- Mother Teresa