Nerve fibers need specific growth factor chemical to form connections within the brain

UC Irvine study on neuronal circuits may help explain memory and cognitive decline in Alzheimer's disease

A discovery on how neural circuitry develops to aid proper cerebral cortex activity may help explain the memory and cognitive decline seen in Alzheimer's disease patients a discovery that could point toward potential treatments, according to UC Irvine scientists.

The study uncovers how cholinergic neuronal circuits, which help the cerebral cortex process information more efficiently, rely on neurotrophin-3, a chemical that stimulates nerve growth. The scientists have determined the circuits need this chemical in order to recognize and reach their target nerve cells in the brain.

Richard Robertson, professor of anatomy and neurobiology, and other researchers from UCI's School of Medicine found that cholinergic nerve fibers grow toward sources of neurotrophin-3 during early development. In experiments with mice, without neurotrophin-3 to direct growth, the developing cholinergic nerve fibers appeared to not recognize their normal target cells in the brain. Because of this, the axon nerve fibers aided by these circuits grew irregularly and missed their specific target neural cells.

This finding, according to Robertson, has significant implications for neurodegenerative diseases like Alzheimer's. Cholinergic neuronal circuits play a key role in the proper information processing by the cerebral cortex and other areas of the brain. The cerebral cortex is the part of the brain that determines intelligence, personality, and planning and organization, and these actions are compromised by neurodegenerative diseases.

"Studies on the brains of Alzheimer's patients have shown a marked decline in these cholinergic circuits. Our work demonstrates that neurotrophin-3 is essential to maintain the connections to cerebral cortex neurons," Robertson said. "This study shows that a neurotrophin-3 therapy may be able to induce nerve fibers to regrow in the cerebral cortex, which would be beneficial to people with Alzheimer's."

Study results appear in the Dec. 1 issue of the journal Neuroscience.

In further studies on this subject, supported by a recently awarded three-year grant from the Alzheimer's Association, Robertson and his colleagues are testing the respective roles of nerve growth factor and neurotrophin-3 in a laboratory model of Alzheimer's disease. Laboratory rats with experimental damage to forebrain cholinergic circuits will be treated with either nerve growth factor or neurotrophin-3, or a combination of both, to determine their ability to produce anatomical, molecular and behavioral recovery.

###

Janie L. Baratta, Jen Yu and Kathleen M. Guthrie of UCI also worked on the study. The National Institutes of Health and the Alzheimer's Association provided funding support.

About the University of California, Irvine: The University of California, Irvine is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 25,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3.7 billion. For more UCI news, visit www.today.uci.edu.

Television: UCI has a broadcast studio available for live or taped interviews. For more information, visit www.today.uci.edu/broadcast.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. The use of this line is available free-of-charge to radio news programs/stations who wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.


Last reviewed: By John M. Grohol, Psy.D. on 21 Feb 2009
    Published on PsychCentral.com. All rights reserved.

 

 

He who has never failed somewhere, that man can not be great.
~ Herman Melville
 
Stumble This Article Print Email
Subscribe to Our Weekly Newsletter

Users Online: 15751
Join Us Now!



 




Find a Therapist
Enter ZIP or postal code