Vitamin C and water not just healthy for people -- healthy for plastics, too

New manufacturing techniques may lead to cheaper, 'greener' plastics

Two new laboratory breakthroughs are poised to dramatically improve how plastics are made by assembling molecular chains more quickly and with less waste. Using such environmentally friendly substances as vitamin C or pure water, the two approaches present attractive alternatives to the common plastic manufacturing technique called free radical polymerization (FRP).

"The methods both present novel and complementary ways to dramatically improve efficiency, product control, and cost for the polymer industry," said Andy Lovinger, the National Science Foundation program director who oversees funds for the two projects. "Each of these approaches could have a very significant impact on polymer manufacturing."

Plastics are polymers, long, potentially complex, molecule chains crafted from an array of smaller chemical units. Using FRP, chemical engineers can create the right plastic for a range of applications, such as a specific trim for a car door or soft foam for a pillow.

For some plastics, the building-block molecules do not easily link together. To surmount this problem, researchers from Carnegie Mellon University in Pittsburgh, Pa., devised a process called atom transfer radical polymerization (ATRP), which provides creative ways to coax the chemical subunits into chains. However, this method comes with certain costs, such as the need for a copper catalyst that can become unwanted waste.

Now, the Carnegie Mellon researchers have discovered that adding vitamin C, glucose, or other electron-absorbing agents to the ATRP process can reduce the amount of copper catalyst by a factor of 1000. Because the catalyst often needs to be removed from the end products, less copper means far less waste and drastically reduced removal costs. Mass manufacturing could become more affordable for a range of items such as advanced sensors, drug delivery systems, paint coatings, and video displays.

The research is described in a paper in the Oct. 17, 2006, issue of the Proceedings of the National Academy of Sciences.

At the University of Pennsylvania (UPenn), researchers are using a different approach to improve FRP. Called single electron transfer-living radical polymerization, the new method relies upon relatively low-energy reactions, uses elemental copper (copper metal, as opposed to copper in a chemical solution) as a catalyst to limit byproducts and allows manufacturers to use one of the most environmentally friendly solvents in the arsenal, water. The entirely new method of polymerization builds upon existing mechanisms to craft large molecules very quickly.


The UPenn researchers presented their findings in the online Journal of the American Chemical Society on Oct. 5, 2006.

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $5.58 billion. NSF funds reach all 50 states through grants to nearly 1,700 universities and institutions. Each year, NSF receives about 40,000 competitive requests for funding, and makes nearly 10,000 new funding awards. The NSF also awards over $400 million in professional and service contracts yearly.

Receive official NSF news electronically through the e-mail delivery and notification system, MyNSF (formerly the Custom News Service). To subscribe, visit and fill in the information under "new users".

Useful NSF Web Sites:

NSF Home Page:
NSF News:
For the News Media:
Science and Engineering Statistics:
Awards Searches:

Last reviewed: By John M. Grohol, Psy.D. on 21 Feb 2009
    Published on All rights reserved.



It is common sense to take a method and try it; if it fails, admit it frankly and try another. But above all, try something.
-- Franklin D. Roosevelt