Scientific issues associated with carbon-neutral energy sources such as cellulosic ethanol

Addressed today at plant science conference by Prof. Chris Somerville

The above figure from the Department of Energy depicts cellulose structure and poses central research questions that need to be answered to transition the nation's transportation sector to cellulosic ethanol....
Click here for more information.

The above figure from the U.S. Department of Energy gives a graphic depiction of the composition of plant cell wall (biomass). Cellulose and hemicellulose contain sugars which can be...
Click here for more information.

Boston -- Professor Chris Somerville of the Carnegie Institution and Stanford University, explained advances in plant science research that are both needed and achievable to reduce costs and multiply current levels of production of biofuels from plant cellulose (biomass).

Somerville presented his talk, "Bioenergy: The 21st Century Challenge to Plant Biologists" at the Annual Meeting of the American Society of Plant Biologists (ASPB) today (4:30 p.m. Eastern Time August 5) in Boston's Hynes Convention Center. The presentation was part of the Major Symposium: "Plants Mitigating Global Change" organized by Professor Stephen Long of the University of Illinois at Urbana-Champaign.

Somerville noted the concept that CO2 emissions may negatively affect climate are not new.

"In 1895, Arrhenius presented a paper to the Stockholm Physical Society titled, On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground in which he argued that increased concentration of atmospheric CO2, such as that caused by combustion of fossil fuel, would lead to the warming of the earth," Somerville commented. "It is apparent that he [Arrhenius] was correct and that we must develop alternative sources of energy."

The earth receives approximately 4,000 times more energy from the sun each year than the total projected human uses in the year 2050, Somerville commented. Green plants growing throughout the world capture the sun's (solar) energy and convert it to bio-chemical energy in a process called photosynthesis. There are vast energy supplies of renewable plant biomass growing throughout the nation and world. There is widespread interest in returning to the use of plants as widely used sources of renewable energy

The above photo displays the huge biomass production in the perennial grass energy crop, Miscanthus. Miscanthus grows approximately 12 feet in height. Somerville noted that advances in plant...
Click here for more information.

In discussing the slide above, Somerville pointed out that the nation's future energy corps will be grown in every region of the nation. Cellulosic ethanol processing plants will also be...
Click here for more information.

"However, because of competing uses for land, a central challenge for 21st century biologists is to increase the efficiency of solar energy capture to the theoretical limit by rational methods. In order to accomplish this we need to acquire and integrate all aspects of knowledge about plant biology into a systems level understanding that can support an engineering approach to plant improvement," Somerville said.

Somerville explained specific areas of research that need to be addressed during his presentation August 5 in Boston. The Advanced Energy Initiative(AEI), a research initiative announced by President Bush in his 2006 State of the Union Address, embraces key recommendations of Somerville and the plant and microbiological science communities. Somerville called the AEI a visionary research initiative that will help transition the nation's transportation sector to use of domestically produced biofuels. Displacing use of gasoline with biofuels, such as cellulosic ethanol, will dramatically reduce emissions of stored carbon dioxide into the atmosphere, Somerville noted.

This past year, Somerville has been participating in workshops organized by the U.S. Department of Energy Office of Science to address the nation's renewable energy needs. The workshops provided information that contributed to the development of the Advanced Energy Initiative of President Bush. The Advanced Energy Initiative is a landmark research effort designed to help break the nation's addiction to oil. A member of the National Academy of Sciences, Somerville recently published the guest editorial in Science (June 2, 2006, Volume 312) concerning bioenergy research. He is a grantee of the DOE Office of Science's Basic Energy Sciences competitive grant awards program for Energy Biosciences research and member of the DOE Office of Science Biological and Environmental Research Advisory Committee (BERAC). He was the speaker on "Biofuels and the [DOE] Biofuels Workshop Report" at the July 11, 2006 meeting of BERAC.


The American Society of Plant Biologists annual meeting is being attended by more than 1,500 plant scientists from the U.S. and abroad. Founded in 1924, ASPB is a nonprofit science society of 5,000 members dedicated to advances in plant science to meet national and world needs. ASPB publishes the two most widely cited plant science journals in the world: Plant Physiology and The Plant Cell.

Last reviewed: By John M. Grohol, Psy.D. on 21 Feb 2009
    Published on All rights reserved.



There was never a genius without a tincture of madness.
-- Aristotle