New fruit fly protein illuminates circadian response to light

(Philadelphia, PA) - Researchers at the University of Pennsylvania School of Medicine have identified a new protein required for the circadian response to light in fruit flies. The discovery of this protein – named JET – brings investigators one step closer to understanding the process by which the body's internal clock synchronizes to light. Understanding how light affects circadian (24-hour) rhythms will likely open doors to future treatments of jetlag.

The body's 24-hour clock controls a multitude of internal functions such as periods of sleep and wakefulness, body temperature, and metabolism. Although circadian function produces a stable rhythm in the body, the biological clock will reset in response to light. The human condition known as jet lag takes place during the period when the body is attempting to resynchronize to the environmental light changes brought on by travel, namely from one time zone to another.

A mutant fruit fly that possesses jetlag-like behaviors enabled senior author Amita Sehgal, PhD, Professor of Neuroscience at Penn and a Howard Hughes Medical Institute (HHMI) Investigator, and colleagues to identify the gene and subsequent protein that aids in the response of the internal biological clock to light. The researchers report their findings in most recent issue of Science.

To test the circadian rhythm of fruit flies, Sehgal and others exposed wild type (control) and mutant flies to several light and dark settings – constant darkness, constant light, and equal periods of light and darkness (a light-dark cycle). During exposure to constant light for one week, the controls developed a disrupted sleep pattern after a few days, while the mutants maintained a regular circadian rhythm. The mutant and control flies displayed no behavioral differences during their exposure to constant darkness and the light-dark cycle. However, when the fruit flies were shifted from one light-dark cycle to another, the mutant flies took two days longer to adjust their sleep-wake cycle to the new light-dark schedule.

"The behavior of the mutant flies is similar to that displayed in a person who has prolonged jetlag," notes Sehgal. In search of answers to the mutant's defective circadian response to light, Sehgal and colleagues looked to the molecular details of the clock cells in the jetlag flies.

When a fruit fly is exposed to light, a photoreceptor called cryptochrome (CRY) transduces the light signal and kicks off a series of reactions within the clock cells of the brain. Under normal conditions, CRY will respond to light by binding to a protein called timeless (TIM). A second protein, a member of the F-box protein family, also binds to TIM, signaling TIM for cellular destruction.

Genetic analysis revealed that the jetlag flies possess a mutation in a gene that encodes a member of the F-box protein family. A closer examination of the protein produced by the mutated sequence led researchers to JET, a new protein within the F-box protein family.

"Since the degradation of TIM always happens in the presence of light, the animal associates the absence of TIM with daytime hours," explains Sehgal. The mutated JET protein reduces the light-dependent degradation of TIM and the circadian response to light.

Sehgal and others were able to reverse the behaviors in the jetlag flies by genetically replacing the mutated gene sequence with the normal sequence, which led to the production of the wild-type (control) JET protein. When the jetlag flies acquired the normal JET protein, regular TIM degradation took place and the fruit fly was better able to adjust to shifts in the light-dark cycle.

Future studies in the Sehgal lab will focus on continuing to identify other molecules required for the circadian response to light. "Some of the molecules required for the circadian light response in flies may be conserved in humans. Over time, we will have a better understanding of how the human clock responds to light and may be able to design drugs to treat jetlag," concludes Sehgal.

###

Study co-authors are Kyunghee Koh and Xiangzhong Zheng, both from Penn. These studies were funded by the National Institutes of Health and HHMI.

This release can also be seen at: www.uphs.upenn.edu/news.

Penn Medicine is a $2.9 billion enterprise dedicated to the related missions of medical education, biomedical research, and high-quality patient care. Penn Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.

Penn's School of Medicine is ranked #2 in the nation for receipt of NIH research funds; and ranked #3 in the nation in U.S. News & World Report's most recent ranking of top research-oriented medical schools. Supporting 1,400 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System includes three hospitals [Hospital of the University of Pennsylvania, which is consistently ranked one of the nation's few "Honor Roll" hospitals by U.S. News & World Report; Pennsylvania Hospital, the nation's first hospital; and Penn Presbyterian Medical Center]; a faculty practice plan; a primary-care provider network; two multispecialty satellite facilities; and home care and hospice.


Last reviewed: By John M. Grohol, Psy.D. on 21 Feb 2009
    Published on PsychCentral.com. All rights reserved.

 

 

You shall be free indeed when your days are not without a care nor your nights without want and a grief. But rather when these things girdle your life and yet you rise above them naked and unbound.
~ Khalil Gibran