Scientists release audio sent by Huygens during Titan descent


Scientists have produced an audio soundbite that captures what the Cassini orbiter heard from Huygens as the probe descended on Titan on Jan. 14.

The sounds may not be music to everyone's ears, but they're beautiful, interesting and important to investigators who are reconstructing the probe's exact position and orientation throughout its parachute dive to Titan's surface.

"The minute-long sound file covers about four hours of real time, from when the Huygens probe deployed its main parachute, down to ground impact two-and-a-half hours later, and then for about another hour on the surface," said Ralph D. Lorenz of the University of Arizona.

Lorenz, who is an assistant research scientist at UA's Lunar and Planetary Laboratory and a co-investigator on Huygens' Surface Science Package, made the sound file from data formatted by Miguel Perez of the European Space Research Technology Centre, Noordwijk, the Netherlands.

To hear the audio file, go to the European Space Agency Website at, or Lorenz' home page at, or the UA News Services science Web page at

The sound is a tone which has a frequency that depends on the strength of Huygens signal picked up by the Cassini orbiter's receiver. Signal strength depends on distances and angles between the orbiter and probe.

Huygens' antenna emits radio energy unevenly, Lorenz said, "like the petals of a flower rather than the smooth shape of a fruit." The rapid changes in the tone reflect Huygens' changing orientation caused by its slowing spin rate during descent and its swinging beneath the parachute.

"You can hear how the motion becomes slower and steadier later in the descent," Lorenz said.

The tone changes dramatically at 43 seconds into the minute soundbite, when the decelerating, choppy whistle suddenly becomes a steady whistle, generally rising in pitch. That sound change is when the probe landed.

"After landing, the tone is far less rich because the probe has stopped moving. But you still hear slight changes as Cassini flies through the lobes or 'petals' of the antenna pattern. Just before the end, you hear the weak signal drop out for a moment and then return. Overall, the signal was very robust. Cassini was locked on the Huygens signal throughout descent."

"Sounds are an interesting way of evaluating one-dimensional data like this," Lorenz said. "The human ear is very good at detecting small changes in sound."

Source: Eurekalert & others

Last reviewed: By John M. Grohol, Psy.D. on 21 Feb 2009
    Published on All rights reserved.



Most of the things worth doing in the world had been declared impossible before they were done.
~ Supreme Court Justice Louis D. Brandeis