The sensor revolution

02/10/04

NSF sensors activities in focus at AAAS annual meeting in Seattle

In the 1990s, the Internet connected us to a planet-wide webof information-all the zillions of bits that are stored in computer memories and hard drives. But now, thanks to an ongoing revolution in highly miniaturized, wirelessly networked sensors, the Internet is reaching out into the physical world, as well.

"We call it 'the Embedding of the Internet'," says Deborah Estrin, who is a computer scientist of the University of California, Los Angeles, and director of the Center for Embedded Networked Sensing, a multi-university research partnership that was launched in August 2002 with funding by the National Science Foundation (NSF). "And it's going to transform our ability to understand and manage the physical world around us."

Indeed, that prospect has led the NSF to fund sensor research for the past decade and more, culminating in a foundation-wide Sensors and Sensor Networks Program that was begun in 2003 with a first-year funding of $47 million. Among the likely applications:

  • Networks of wireless environmental sensors could be deployed in remote areas to monitor factors such as the moisture load of the vegetation (and thus the degree of fire danger); agricultural runoff in rivers, streams, and groundwater; seismic events; air quality; and the ecosystem's overall response to climate change.
  • Bridges and buildings with built-in sensor networkscould report on their own structural integrity, and pinpoint internal damage after an earthquake.
  • Networks of miniature chemical and biological sensors could be deployed in hospitals, post offices, and other sensitive areas to raise the alarm at the first sign of anthrax, smallpox, ricin, or other indications of a terrorist attack.
  • Clusters of "smart," but almost undetectably small sensors could be scattered across a stretch of hostile territory by air to monitor traffic and troop movements.

    Sensors and their applications will also be very much in evidence at the Seattle meeting of the American Association for the Advancement of Science (AAAS). Among the most prominent events will be two topical lectures:

    Deborah Estrin: Instrumenting the World with Wireless Sensor Networks Friday, February 13, 2004, 1:30 to 2:15 p.m.

    Larry R. Dalton: Electro-Optics for the Next Generation Information Technology, Sensing, And Defense Applications Friday, February 13, 2004, 1:30 to 2:15 p.m. Dalton is director of the NSF-funded Center on Materials and Devices for Information Technology Research at the University of Washington.

    But other sessions will be dealing with sensors, as well:

    Cyberinfrastructure: Revolutionizing Environmental Science in the 21st Century Friday, February 13, 2004, 9:00 a.m. - 12:00 noon & 2:30 p.m. -5:30 p.m. Estrin will be giving a technical talk in the afternoon session. "Cyberinfrastructure" is a term that 's come to describe NSF's most expansive, long-term vision of computing-a vision that most definitely includes extensive sensor networks.

    Miniaturization of Chemical, Energy and Biological Systems for Security Applications Friday, February 13, 2004, 2:30 p.m. - 5:30 p.m.

    2004 Nanotechnology Seminar: Chemical and Biological Nanosensors Friday, February 13, 2004, 10:00 a.m. - 1:00 p.m.

    21st Century Photonics Sunday, February 15, 2004, 9:00 a.m. - 12:00 noon & 2:30 p.m. -5:30 p.m. Larry Dalton will be speaking in the morning session.

    Source: Eurekalert & others

    Last reviewed: By John M. Grohol, Psy.D. on 21 Feb 2009
        Published on PsychCentral.com. All rights reserved.

     

     

    Happiness is having a large, loving, caring, close-knit family -- in another city.
    -- George Burns
  •